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“We have this problem …” 

> Developers at top web properties trying to 

make their product better 

> They have massive, un-indexable datasets to 

work with 

> And they want to do ad-hoc analysis on them 



“… and we have this tool …” 

> Map-reduce over a parallel cluster solves the 

problem quite efficiently 

> Takes advantage of the massive parallelism 

inherent in the data analysis problem 



“… how do we make it simple?” 

> Map-reduce is hard to use 

– doesn’t support common operations like join in a 

reusable fashion 

> SQL is unfamiliar 

– Users are developers who are more comfortable 

with procedural than declarative code 



A different kind of question 

> This class has largely been concerned with 

implementing relational database constructs 

efficiently in a distributed setting 

> This paper is concerned with building easy to 

use constructs on top of an efficient 

distributed implementation 



Introducing Pig Latin 

> A language designed to provide abstraction 

over procedural map-reduce without being so 

declarative as to be opaque 

> The authors have built a query translator 

called Pig for Pig Latin 

– Written in Java for the Hadoop map-reduce 

environment 

– Open source and available at http://pig.apache.org 

http://pig.apache.org/


Quick Overview of Map-Reduce 
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Disadvantages of SQL 

> Not as inherently parallelizable 

> Declarative style uncomfortable for 

procedural programmers 

> Many primitives with complex interaction 

– Hard for the programmer to know where the 

performance bottlenecks are 



Advantages of Map-Reduce 

> Inherently Parallel 

> Procedural model 

> Only two primitives (map and reduce) 

– Makes it clear what the system is doing 



Disadvantages of Map-Reduce 

> Can be difficult to make queries fit into the 

two-stage “map then reduce” model 

> Can’t optimize across the abstraction 

> No primitives for common operations 

– Projection 

– Selection 



An Example 

> SQL 
SELECT category, AVG(pagerank) 
FROM urls WHERE pagerank > 0.2 
GROUP BY category HAVING COUNT(*) > 1000000 

> Pig Latin 
good_urls = FILTER urls BY pagerank > 0.2; 
groups = GROUP good_urls BY category; 
big_groups = FILTER groups  
             BY COUNT(good_urls) > 1000000; 
output = FOREACH big_groups GENERATE  
           category, AVG(good_urls.pagerank); 

 



Dataflow Language 

> Each line defines a single manipulation 

> Similar to a query execution plan 

– Lower level than SQL 

– This can aid optimization 

> User-defined I/O allows Pig to work with data 

stores that aren’t databases 

– Queries are read-only (no transactions) 

– Queries are ad-hoc (less value in pre-built indices) 



Data Model 

>  Atom: single atomic value, e.g. string, number 

>  Tuple: sequence of fields of any data type 

>  Bag: collection of tuples 

– Possible duplicates 

– Tuples need not have consistent schema 

>  Map: collection of data items which can be 

looked up by an atomic key 

– Keys must have same type, data items may not 



Pig Expressions 

Expression Type Example Value for t 

Constant ‘foo’ ‘foo’ 

Field (by position) $0 ‘quux’ 

Field (by name) f3 [‘age’ → 20] 

Projection f2.$0 {(‘foo’)(‘bar’)} 

Map Lookup f3#‘baz’ 20 

Function Evaluation SUM(f2.$1) 3 

Conditional f3#‘baz’>42 ? 1:0 0 

Flattening f1,FLATTEN(f2) (‘quux’,‘foo’,1) 
(‘quux’,‘bar’,2) 

t = (‘quux’, {(‘foo’,1)(‘bar’,2)}, [‘baz’ → 20]) 



Pig Latin Primitives - Input 

>  queries = LOAD ‘query_log.txt’  
 USING myLoad() AS  
 (userID, queryString, timestamp); 

> Loads from a file 

> Using a de-serializer 

– Default is plain-text tab-separated values 

> Given an optional schema 

– If not given, refer to data by position 



Pig Latin Primitives - Output 

>  STORE queries INTO ‘q_output.txt’  
 USING myStore(); 

> Stores bag to file 

> Using a serializer 

– Default is plain-text tab-separated values 



Pig Latin Primitives - Per-tuple 

>  f_queries = FOREACH queries  
 GENERATE userId, f(queryString); 

> For each tuple in the bag, generate the tuple 

described by the GENERATE expression 

> May use FLATTEN in the GENERATE 

expression to generate more than one tuple 



Pig Latin Primitives - Per-tuple 

>  real_queries = FILTER queries  
 BY userId neq ‘bot’; 

> Output each tuple in the bag only if it satisfies 

the BY expression 

> AND, OR, and NOT logical operators 

> ==, != operate on numbers, eq, neq on strings 



Pig Latin Primitives - Grouping 

>  grouped_revenue = GROUP revenue  
 BY queryString; 

> Outputs a list of tuples, one for each unique 

value of the BY expression, where the first 

element is the value of that expression and 

the second is a bag of tuples matching that 

expression 



Pig Latin Primitives - Grouping 

>  grouped_data = COGROUP  
 results BY queryString 
 revenue BY queryString; 

> Outputs a list of tuples, one for each unique 
value of the BY expressions; the first element 
is that expression and the rest are bags of 
tuples from each BY which match that 
expression 

> Can generate a join by flattening the bags 



Pig Latin Primitives - Sets 

>  UNION returns the union of two bags 

>  CROSS returns the cross product of two bags 

>  ORDER sorts a bag by the given field(s) 

>  DISTINCT eliminates duplicate tuples in a bag 



Pig, the Pig Latin Compiler 

> Lazily builds execution plan as it sees each 

command 

– Allows optimizations like combining or re-

ordering filters 

> Processing is only triggered on STORE 

> Logical plan construction is platform-

independent, but designed for Hadoop map-

reduce 



Implementation 

> Each (CO)GROUP 

command is converted 

into a map-reduce job 

> Map assigns keys to 

tuples by BY clauses 

– Also initial per-tuple 

processing 

> Reduce handles per-

tuple processing up to 

the next (CO)GROUP 
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Efficiency 

> Moving/replicating data between successive 

map-reduce jobs results in overhead 

> When a nested bag is created, then aggregated 

using a parallelizable operation, can just 

perform the reduction as tuples are seen 

instead of materializing the bag 

– If this can’t be done, spill to disk, use database-

style sorting 



Debugging 

> The Pig Pen environment dynamically creates 

a sandbox dataset to illustrate query flow 

> Allows incremental query development 

without long execution times of full queries 

> Takes random samples of data, attempts to 

provide full query coverage, synthesizes data 

where needed. 



Critique - Strengths 

> Approach of making language features 

translate clearly to low-level constructs 

– Allows the programmer to better optimize their 

work 

> Simple, regular data model 

> Ability to fit a full language overview in a short 

paper 



Critique - Weaknesses 

> Only anecdotal evidence for Pig Latin being 

easier to use than SQL 

> Inadequate coverage of Pig Pen debugger 

– Algorithms are opaque, not apparently published 

> No data to back up optimization claims 

– Can’t prove programmers can optimize better 

than automated SQL optimizer 

– No comparison of Pig to optimized SQL 


