
Pig Latin: A Not-So-Foreign

Language for Data Processing

Christopher Olston, Benjamin Reed,

Utkarsh Srivastava, Ravi Kumar,

Andrew Tomkins (Yahoo! Research)

Presented by Aaron Moss (University

of Waterloo)

“We have this problem …”

> Developers at top web properties trying to

make their product better

> They have massive, un-indexable datasets to

work with

> And they want to do ad-hoc analysis on them

“… and we have this tool …”

> Map-reduce over a parallel cluster solves the

problem quite efficiently

> Takes advantage of the massive parallelism

inherent in the data analysis problem

“… how do we make it simple?”

> Map-reduce is hard to use

– doesn’t support common operations like join in a

reusable fashion

> SQL is unfamiliar

– Users are developers who are more comfortable

with procedural than declarative code

A different kind of question

> This class has largely been concerned with

implementing relational database constructs

efficiently in a distributed setting

> This paper is concerned with building easy to

use constructs on top of an efficient

distributed implementation

Introducing Pig Latin

> A language designed to provide abstraction

over procedural map-reduce without being so

declarative as to be opaque

> The authors have built a query translator

called Pig for Pig Latin

– Written in Java for the Hadoop map-reduce

environment

– Open source and available at http://pig.apache.org

http://pig.apache.org/

Quick Overview of Map-Reduce

(k1, v1)

(k2, v2)

…

(kn, vn)

(k*
1, v

*
1)

(k*
2, v

*
2)

…

(k*
m, v*

m)

map

map

map

k*
1 (v

*
1 …)

k*
m (v*

m …)

(v**
1 …)

(v**
p …)

reduce

reduce

reduce

Disadvantages of SQL

> Not as inherently parallelizable

> Declarative style uncomfortable for

procedural programmers

> Many primitives with complex interaction

– Hard for the programmer to know where the

performance bottlenecks are

Advantages of Map-Reduce

> Inherently Parallel

> Procedural model

> Only two primitives (map and reduce)

– Makes it clear what the system is doing

Disadvantages of Map-Reduce

> Can be difficult to make queries fit into the

two-stage “map then reduce” model

> Can’t optimize across the abstraction

> No primitives for common operations

– Projection

– Selection

An Example

> SQL
SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 1000000

> Pig Latin
good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups
 BY COUNT(good_urls) > 1000000;
output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank);

Dataflow Language

> Each line defines a single manipulation

> Similar to a query execution plan

– Lower level than SQL

– This can aid optimization

> User-defined I/O allows Pig to work with data

stores that aren’t databases

– Queries are read-only (no transactions)

– Queries are ad-hoc (less value in pre-built indices)

Data Model

> Atom: single atomic value, e.g. string, number

> Tuple: sequence of fields of any data type

> Bag: collection of tuples

– Possible duplicates

– Tuples need not have consistent schema

> Map: collection of data items which can be

looked up by an atomic key

– Keys must have same type, data items may not

Pig Expressions

Expression Type Example Value for t

Constant ‘foo’ ‘foo’

Field (by position) $0 ‘quux’

Field (by name) f3 [‘age’ → 20]

Projection f2.$0 {(‘foo’)(‘bar’)}

Map Lookup f3#‘baz’ 20

Function Evaluation SUM(f2.$1) 3

Conditional f3#‘baz’>42 ? 1:0 0

Flattening f1,FLATTEN(f2) (‘quux’,‘foo’,1)
(‘quux’,‘bar’,2)

t = (‘quux’, {(‘foo’,1)(‘bar’,2)}, [‘baz’ → 20])

Pig Latin Primitives - Input

> queries = LOAD ‘query_log.txt’
 USING myLoad() AS
 (userID, queryString, timestamp);

> Loads from a file

> Using a de-serializer

– Default is plain-text tab-separated values

> Given an optional schema

– If not given, refer to data by position

Pig Latin Primitives - Output

> STORE queries INTO ‘q_output.txt’
 USING myStore();

> Stores bag to file

> Using a serializer

– Default is plain-text tab-separated values

Pig Latin Primitives - Per-tuple

> f_queries = FOREACH queries
 GENERATE userId, f(queryString);

> For each tuple in the bag, generate the tuple

described by the GENERATE expression

> May use FLATTEN in the GENERATE

expression to generate more than one tuple

Pig Latin Primitives - Per-tuple

> real_queries = FILTER queries
 BY userId neq ‘bot’;

> Output each tuple in the bag only if it satisfies

the BY expression

> AND, OR, and NOT logical operators

> ==, != operate on numbers, eq, neq on strings

Pig Latin Primitives - Grouping

> grouped_revenue = GROUP revenue
 BY queryString;

> Outputs a list of tuples, one for each unique

value of the BY expression, where the first

element is the value of that expression and

the second is a bag of tuples matching that

expression

Pig Latin Primitives - Grouping

> grouped_data = COGROUP
 results BY queryString
 revenue BY queryString;

> Outputs a list of tuples, one for each unique
value of the BY expressions; the first element
is that expression and the rest are bags of
tuples from each BY which match that
expression

> Can generate a join by flattening the bags

Pig Latin Primitives - Sets

> UNION returns the union of two bags

> CROSS returns the cross product of two bags

> ORDER sorts a bag by the given field(s)

> DISTINCT eliminates duplicate tuples in a bag

Pig, the Pig Latin Compiler

> Lazily builds execution plan as it sees each

command

– Allows optimizations like combining or re-

ordering filters

> Processing is only triggered on STORE

> Logical plan construction is platform-

independent, but designed for Hadoop map-

reduce

Implementation

> Each (CO)GROUP

command is converted

into a map-reduce job

> Map assigns keys to

tuples by BY clauses

– Also initial per-tuple

processing

> Reduce handles per-

tuple processing up to

the next (CO)GROUP

LOAD

FILTER

GROUP

FOREACH

COGROUP

STORE

LOAD

map1

reduce1

map2

reduce2

Efficiency

> Moving/replicating data between successive

map-reduce jobs results in overhead

> When a nested bag is created, then aggregated

using a parallelizable operation, can just

perform the reduction as tuples are seen

instead of materializing the bag

– If this can’t be done, spill to disk, use database-

style sorting

Debugging

> The Pig Pen environment dynamically creates

a sandbox dataset to illustrate query flow

> Allows incremental query development

without long execution times of full queries

> Takes random samples of data, attempts to

provide full query coverage, synthesizes data

where needed.

Critique - Strengths

> Approach of making language features

translate clearly to low-level constructs

– Allows the programmer to better optimize their

work

> Simple, regular data model

> Ability to fit a full language overview in a short

paper

Critique - Weaknesses

> Only anecdotal evidence for Pig Latin being

easier to use than SQL

> Inadequate coverage of Pig Pen debugger

– Algorithms are opaque, not apparently published

> No data to back up optimization claims

– Can’t prove programmers can optimize better

than automated SQL optimizer

– No comparison of Pig to optimized SQL

